If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+3(x)-10=0
a = 1; b = 3; c = -10;
Δ = b2-4ac
Δ = 32-4·1·(-10)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-7}{2*1}=\frac{-10}{2} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+7}{2*1}=\frac{4}{2} =2 $
| 1/4x-23=16 | | x^2-3(x)-10=0 | | x^2-7(x)-10=0 | | x^2+7(x)-10=0 | | 3/4x-7/8=-7/12x+7/4 | | 3(x+4)=8x-16 | | 5/6x+5=-3 | | 8/8+u=6 | | (2x+3)^2-x-1=(2x+5)(2x-5) | | x-2+x+2+x+5=180 | | 46+8h−1=18h+5 | | 2x+4x+3+7=34 | | 9z-17=64 | | −6(−3+6p)=5p+18 | | 12.5x=60 | | -2(2-x)-4=12 | | 37=7+6g | | 8/7x+1-1/5x=101/35 | | (x-1)^2-24=0 | | -4x^2+14x+8=20 | | 0=x×x-7 | | 4.9x^2-12.4x-10.5=0 | | 3(x-2)+4x=10x(x+1) | | 11-7b=25 | | x+4+3=-6 | | 3x+4=1/2x+5 | | Y=x2x6/x3 | | 63-m=7 | | 7x+140=3x+112 | | 2x-17=-2+5x | | -6m+120=0 | | C=4n+36 |